
Introducing pyremctl:

A Python interface to remctl

Thomas L. Kula

2008 AFS and Kerberos Best Practices Workshop

One Minute remctl

• http://www.eyrie.org/~eagle/software/remctl/

• “Remctl allows you to remotely call a program and supply it

with arguments, getting back any output and the exit status,

authenticated with and encrypted by GSS-API Kerberos v5”

1

One Minute remctl

• Using the client you might call
remctl mcketrick.tproa.net test i like tea

• And if configured like this:
test ALL /path/to/remctl-test.sh ANYUSER

• remctld will execute the following command:
/path/to/remctl-test.sh test i like tea

• And return to you the output (stdout and stderr) and exit
status of that program

2

One Minute remctl

• Bonus features: the following environment variables are passed

to the called program:

– REMOTE USER: the kerberos identity of the caller

– REMOTE ADDR: the IP address of the calling host

– REMOTE HOST: the name of the calling host

• You can either give remctld a list of principals allowed to run

each command or use the above environment variables to

make your decision

3

remctl bindings

• Using the remctl client is fine in some situations

• In other situations, you may want to embed it in something

else

• Bindings for C and Perl (well tested) as well as Java (not as

well tested)

4

Python bindings for remctl

• Current source: http://kula.tproa.net/code/pyremctl/

• Hand crafted (with love)

• Known to work with NetBSD, Python 2.4.3 and Remctl 2.11

• Can’t think of any reason it shouldn’t work with later stuff

or on other operating systems

5

Installation

• Like any other python module

• Get and unpack the source

• python setup.py build

• python setup.py install (with appropriate permissions)

• Assumes remctl is already installed in a sane location

6

‘Simple’ interface

#!/usr/pkg/bin/python2.4

import remctl

import sys

host = ’mcketrick.tproa.net’

port = 4373

principal = ’host/mcketrick.tproa.net’

command = [’test’, ’i’, ’like’, ’tea’]

try:

conn = remctl.remctl(host, port, principal, command)

7

except RemctlArgError:

print "An invalid argument was supplied"

sys.exit()

except RemctlProtocolError, e:

print "Protocol error: " + e

sys.exit()

if conn.stdout != None:

print "Stdout: " + conn.stdout

if conn.stderr != None:

print "Stderr: " + conn.stderr

print "Status: " + str(conn.status)

‘Simple’ interface

• Useful for just firing off a command

8

‘Complex’ interface

...

conn = remctl.Remctl()

conn.open(host, port, principal)

Or: conn = remctl.Remctl(host, port, principal)

9

‘Complex’ interface

try:

conn.command(command)

except RemctlArgError:

sys.exit()

except RemctlProtocolError:

sys.exit()

except RemctlError:

sys.exit()

except RemctlNotOpened:

sys.exit()

10

‘Complex’ interface

type, output, stream, status, error = conn.output()

while type != remctl.REMCTL_OUT_DONE:

if type == remctl.REMCTL_OUT_OUTPUT:

print "Stream " + str(stream) +": " + output

elif type == remctl.REMCTL_OUT_STATUS:

print "Status: " + str(status)

elif type == remctl.REMCTL_OUT_ERROR:

print "Remctl error: " + error

type, output, stream, status, error = conn.output()

11

‘Complex’ interface

• Useful for sending more than one command over a connection

12

Status

• Both interfaces seem to be working fine

• Not quite convinced this is idiomatic Python (My First

Python/C Module)

13

Introducing pyremctl:

A Python interface to remctl

Thomas L. Kula

kula@tproa.net

2008 AFS and Kerberos Best Practices Workshop
http://kula.tproa.net/talks/afskbpw2008/kula-pyremctl.pdf

