Introducing pyremctl:
A Python interface to remctl

Thomas L. Kula

2008 AFS and Kerberos Best Practices Workshop

One Minute remctl

e http://www.eyrie.org/ eagle/software/remctl/

e ""Remctl allows you to remotely call a program and supply it
with arguments, getting back any output and the exit status,
authenticated with and encrypted by GSS-API Kerberos v5”

One Minute remctl

Using the client you might call
remctl mcketrick.tproa.net test i1 like tea

And if configured like this:
test ALL /path/to/remctl-test.sh ANYUSER

remctld will execute the following command:
/path/to/remctl-test.sh test i like tea

And return to you the output (stdout and stderr) and exit
status of that program

One Minute remctl
e Bonus features: the following environment variables are passed
to the called program:
— REMOTE_USER: the kerberos identity of the caller
— REMOTE _ADDR: the IP address of the calling host
— REMOTE HOST: the name of the calling host
e You can either give remctld a list of principals allowed to run

each command or use the above environment variables to
make your decision

remct| bindings

e Using the remctl client is fine in some situations

e In other situations, you may want to embed it in something
else

e Bindings for C and Perl (well tested) as well as Java (not as
well tested)

Python bindings for remctl

Current source: http://kula.tproa.net/code/pyremctl/

Hand crafted (with love)

Known to work with NetBSD, Python 2.4.3 and Remctl| 2.11

Can’'t think of any reason it shouldn't work with later stuff
or on other operating systems

Installation

Like any other python module

Get and unpack the source

python setup.py build

python setup.py install (with appropriate permissions)

Assumes remctl is already installed in a sane location

‘Simple’ interface
#!/usr/pkg/bin/python2.4

import remctl

import sys

host = ’mcketrick.tproa.net’

port = 4373

principal = ’host/mcketrick.tproa.net’
command = [’test’, ’i’, ’like’, ’tea’]
try:

conn = remctl.remctl(host, port, principal, command)

except RemctlArgError:
print "An invalid argument was supplied"
sys.exit ()

except RemctlProtocolError, e:
print "Protocol error: " + e

sys.exit ()

if conn.stdout != None:

print "Stdout: " + conn.stdout
if conn.stderr != None:

print "Stderr: " + conn.stderr

print "Status: " + str(conn.status)

‘Simple’ interface

e Useful for just firing off a command

‘Complex’ interface

conn = remctl.Remctl ()

conn.open(host, port, principal)

Or: conn = remctl.Remctl(host, port, principal)

‘Complex’ interface

try:
conn.command (command)

except RemctlArgError:
sys.exit ()

except RemctlProtocolError:
sys.exit ()

except RemctlError:
sys.exit ()

except RemctlNotOpened:
sys.exit ()

10

‘Complex’ interface

type, output, stream, status, error = conn.output()

while type '= remctl.REMCTL_OUT_DONE:
if type == remctl.REMCTL_OUT_OUTPUT:

print "Stream " + str(stream) +": " + output
elif type == remctl.REMCTL_OUT_STATUS:

print "Status: " + str(status)
elif type == remctl.REMCTL_OUT_ERROR:

print "Remctl error: " + error

type, output, stream, status, error = conn.output()

11

‘Complex’ interface

e Useful for sending more than one command over a connection

12

Status

e Both interfaces seem to be working fine

e Not quite convinced this is idiomatic Python (My First
Python/C Module)

13

Introducing pyremctl:
A Python interface to remctl

Thomas L. Kula

kula@tproa.net

2008 AFS and Kerberos Best Practices Workshop

http://kula.tproa.net/talks/afskbpw2008/kula-pyremctl.pdf

