
Managing Suck: Kerberos Password

Quality at the Universty of Michigan

Thomas L. Kula

Information and Technology Services

University of Michigan

2010 AFS and Kerberos Best Practices Workshop

Passwords should...

• Be easy for the user to remember

1

Passwords should...

• Be easy for the user to remember

• Be hard for a bad guy to know

2

Passwords should...

• Be easy for the user to remember

• Be hard for a bad guy to know

• Allow a user to quickly access her resources

3

Passwords should...

• Be easy for the user to remember

• Be hard for a bad guy to know

• Allow a user to quickly access her resources

• Keep bad guys out forever

4

These are often mutally exclusive requirements

5

6

But users are very possessive of their data

7

Even data that doesn’t matter...

8

Even data that doesn’t matter...

...but who decides what matters?

9

I don’t want to have to type a novel to read my

e-mail, why can’t my password be ‘password’ !

10

But, of course, you’re to blame for letting someone

else into their account

11

But we can give “high-security need” users tokens,

right? They’re the only ones we care about, right?

12

But many users have data that is very sensitive

13

Dr. Dinwiddle loves chunky peanut butter, and we

only give tenure to smooth peanut butter lovers in

this department!

14

Budget cutbacks! Hah! We can’t buy paperclips but

the Chair gets new carpet in her office!

15

• These examples are university-centric

• But similar concerns exist in any organization of any size

• Or even in any community of any size

16

In short, the compromise of even “low security need”

accounts could still cause problems for any

organization

17

18

Some History

19

Some History

• Twice-yearly audits of the kerberos database using John the

Ripper

• Which can handle afs3 keys (ugh)

20

Some History

• An amazing number of keys cracked...

• ...in a depressingly short period of time

21

Some History

• Departments notify users

• Departments had to opt-in to doing anything

• And only recently did some of the larger units opt-in

22

Some History

• Even after forcing users to change passwords...

• ...many chose weak passwords again

• ...and keep showing up in audits

23

ITS needed something stronger to try to fix this

24

Kerberos Password Quality Plugin

• Derived from a framework written for Stanford

• Updated to work with MIT Kerberos 1.6.3

• A locally developed plugin that uses Cracklib

25

Cracklib

• ...is special

26

Cracklib

• Essentially a compliment to John the Ripper

27

Cracklib

• ...is ugly

28

Cracklib

• Assumes it is part of a one-shot application

• Has very ugly static buffers all over the place

• Leaks file descriptors if you use more than one dictionary

– But only if the dictionaries have different names....

• Assumes that people’s names are in /etc/passwd

29

Rollout, Part 1

• Put all previously cracked passwords in a dictionary

• Add some extra rules to cracklib

– More Rules = More Better!

30

Initial Reaction

31

THE SKY IS FALLING!

32

Initial Reaction

• In retrospect, the additional rules were a blindingly bad idea

• In retrospect, having previously-cracked passwords in a crack-

lib dictionary was a blindingly bad idea

33

Initial Reaction

• Did I mention that kadmind really hates running out of file

descriptors?

34

Finding Assumptions in Weird Places

• Part of our legacy provisioning system would generate ran-

dom passwords for users

• Passwords which didn’t always pass the new plugin’s checks...

• ...and would really confuse users who told it to generate

a password for them and got an error message saying the

password they supplied wasn’t good enough

35

Rollout, Part 2

• Previously broken passwords move to simple lookup list

• Extra rules removed

• Single dictionary

36

More Reaction

• Why did this password fail?

• Why doesn’t this password fail?

37

Why did this password fail?

• It’s trivial for a human to look at a password and decide,

“Yeah, that looks good”

• It’s incredibly hard to algorithmically decide “Yeah, that looks

good”

38

Why doesn’t this password fail?

• The best you will get with this strategy is a giant list of rules

39

Why doesn’t this password fail?

• The best you will get with this strategy is a giant list of rules

• Users are incredibly good at inventing new ways of making

bad passwords

40

Worse, people have different ideas of what a good

password is

2emPeech. is too much like the phrase To Impeach

41

How do you explain to users what they have to do to

get a good password?

• With some hundred or so crackib rules and 1.7 million words

in a dictionary, you can only give a guideline

• My explanation for how the plugin works, for support staff,

goes on for two pages.

42

43

We have a password quality plugin...

...we’re done, right?

44

Future Thoughts

• We audit passwords using John the Ripper

• We ensure password quality using Cracklib

• Which are essentially compilments of each other

45

Doc, it hurts when I use that password!

46

Then don’t use that password!

47

Does our combination of JtR/Cracklib catch all the

threats we care about?

48

Have we even quantified what all the threats we care

about are?

49

Most importantly, are we looking at what new

threats are, and reacting to those new threats?

50

A case for forcing password changes every N months

51

...but not for the reason you’re thinking

52

How good is a really strong quality assurance system

if there are passwords from 1993 that have never

gone through it?

53

And, how do you get rid of ancient key types?

54

We will have principals with only single-DES keys

• Until we force people to change passwords

55

We will have principals with only single-DES keys

• Until we force people to change passwords

• ... or until the heat death of the Universe

56

Forcing Password Changes

• I don’t think forcing users to change passwords every 90 days

adds much

• But making them change it at least every two years gives

you a decent timeline for rolling out new encryption types

and phasing out old ones

57

Thanks and Questions

58

