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Passwords should...

• Be easy for the user to remember

• Be hard for a bad guy to know

• Allow a user to quickly access her resources

• Keep bad guys out forever

4



These are often mutally exclusive requirements
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But users are very possessive of their data
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Even data that doesn’t matter...
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Even data that doesn’t matter...

...but who decides what matters?
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I don’t want to have to type a novel to read my

e-mail, why can’t my password be ‘password’ !
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But, of course, you’re to blame for letting someone

else into their account
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But we can give “high-security need” users tokens,

right? They’re the only ones we care about, right?
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But many users have data that is very sensitive
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Dr. Dinwiddle loves chunky peanut butter, and we

only give tenure to smooth peanut butter lovers in

this department!
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Budget cutbacks! Hah! We can’t buy paperclips but

the Chair gets new carpet in her office!
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• These examples are university-centric

• But similar concerns exist in any organization of any size

• Or even in any community of any size
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In short, the compromise of even “low security need”

accounts could still cause problems for any

organization
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Some History
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Some History

• Twice-yearly audits of the kerberos database using John the

Ripper

• Which can handle afs3 keys (ugh)
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Some History

• An amazing number of keys cracked...

• ...in a depressingly short period of time
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Some History

• Departments notify users

• Departments had to opt-in to doing anything

• And only recently did some of the larger units opt-in
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Some History

• Even after forcing users to change passwords...

• ...many chose weak passwords again

• ...and keep showing up in audits
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ITS needed something stronger to try to fix this
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Kerberos Password Quality Plugin

• Derived from a framework written for Stanford

• Updated to work with MIT Kerberos 1.6.3

• A locally developed plugin that uses Cracklib
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Cracklib

• ...is special
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Cracklib

• Essentially a compliment to John the Ripper
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Cracklib

• ...is ugly
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Cracklib

• Assumes it is part of a one-shot application

• Has very ugly static buffers all over the place

• Leaks file descriptors if you use more than one dictionary

– But only if the dictionaries have different names....

• Assumes that people’s names are in /etc/passwd
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Rollout, Part 1

• Put all previously cracked passwords in a dictionary

• Add some extra rules to cracklib

– More Rules = More Better!
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Initial Reaction
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THE SKY IS FALLING!
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Initial Reaction

• In retrospect, the additional rules were a blindingly bad idea

• In retrospect, having previously-cracked passwords in a crack-

lib dictionary was a blindingly bad idea
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Initial Reaction

• Did I mention that kadmind really hates running out of file

descriptors?
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Finding Assumptions in Weird Places

• Part of our legacy provisioning system would generate ran-

dom passwords for users

• Passwords which didn’t always pass the new plugin’s checks...

• ...and would really confuse users who told it to generate

a password for them and got an error message saying the

password they supplied wasn’t good enough
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Rollout, Part 2

• Previously broken passwords move to simple lookup list

• Extra rules removed

• Single dictionary
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More Reaction

• Why did this password fail?

• Why doesn’t this password fail?
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Why did this password fail?

• It’s trivial for a human to look at a password and decide,

“Yeah, that looks good”

• It’s incredibly hard to algorithmically decide “Yeah, that looks

good”
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Why doesn’t this password fail?

• The best you will get with this strategy is a giant list of rules
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Why doesn’t this password fail?

• The best you will get with this strategy is a giant list of rules

• Users are incredibly good at inventing new ways of making

bad passwords
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Worse, people have different ideas of what a good

password is

2emPeech. is too much like the phrase To Impeach
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How do you explain to users what they have to do to

get a good password?

• With some hundred or so crackib rules and 1.7 million words

in a dictionary, you can only give a guideline

• My explanation for how the plugin works, for support staff,

goes on for two pages.

42



43



We have a password quality plugin...

...we’re done, right?
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Future Thoughts

• We audit passwords using John the Ripper

• We ensure password quality using Cracklib

• Which are essentially compilments of each other

45



Doc, it hurts when I use that password!
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Then don’t use that password!
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Does our combination of JtR/Cracklib catch all the

threats we care about?
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Have we even quantified what all the threats we care

about are?
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Most importantly, are we looking at what new

threats are, and reacting to those new threats?
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A case for forcing password changes every N months
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...but not for the reason you’re thinking
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How good is a really strong quality assurance system

if there are passwords from 1993 that have never

gone through it?
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And, how do you get rid of ancient key types?
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We will have principals with only single-DES keys

• Until we force people to change passwords
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We will have principals with only single-DES keys

• Until we force people to change passwords

• ... or until the heat death of the Universe
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Forcing Password Changes

• I don’t think forcing users to change passwords every 90 days

adds much

• But making them change it at least every two years gives

you a decent timeline for rolling out new encryption types

and phasing out old ones
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Thanks and Questions
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